2.10 ALCOHOLS EXTRA QUESTIONS MS

1. (a)
$$C_4H_8O \rightarrow C_5H_9NO$$

 $Mr = 72$ (1) $Mr = 99$ (1)
If MF shown lose 1 for wrong Mr.
If no MF shown max 2 if Mr wrong
 $5g \rightarrow \frac{5}{72} \times 99$ (1) (= 6.88g)
 64% yield = $0.64 \times \frac{5}{72} \times 99 = 4.40g$ (1)
(allow answer $4.36 - 4.42$) 4
(b) butanone has peak at $\approx 1700 \text{ cm}^{-1}$ (1)
(but not at $\approx 3350 \text{ cm}^{-1}$)
B has peak at $\approx 3350 \text{ cm}^{-1}$ (1)
(but not at $\approx 1700 \text{ cm}^{-1}$) 4

(c)
$$(CH_2 - CH_2) (n)$$

 (CH_2CH_3)
or C_2H_5
(1)
(1)

[9]

2. *Catalyst* (c) phosphoric acid or (c) sulphuric acid (1)

Not dilute

accept correct formula

Conditions Temp = High or 200-500 °C (1) Temp = medium or moderate or 50-100 °C

Pressure = High or 5–20 Mpa or 50–200 atoms

Pressure = High or 2–4 Mpa or 20–40 atoms

If. wrong, no catalyst given, allow phosphoric acid conditions

Equation
$$CH_2 = CH_2 + H_2O \rightarrow CH_3 CH_2 OH$$

allow C_2H_4 allow $C_2 H_5OH$

not CH₂ CH₂

4

[4]

- C(1)
- (b) lone pair (**1**)
- (c) (i) orange (1) tertiary alcohol (1) not oxidised (1)
 - (ii) two from:

$$\begin{array}{c} CH_{3} \\ | \\ CH_{3} \\ - CH \\ - CH_{2} \\ - CH \\ - CH_{3} \\ -$$

$$CH_{3}CH_{2} - CH - CH - CH_{3}$$

$$| CH_{3}CH_{2} - CH - CH_{3}$$

$$| CH_{3}CH_{3} - CH_{3}$$

$$| CH_{3}CH_{3} - CH_{3}$$

$$| CH_{3}CH_{3} - CH_{3}$$

$$CH_{3} \longrightarrow CH - CH - CH_{3}$$

$$| \qquad | \qquad CH_{3} \longrightarrow CH_{3} \cup U$$

$$CH_{3} \cup U = (2x1)$$

[11]

5

5

[4]

3.

(a) $C_4H_{10}O + 6O_2 \rightarrow 4CO_2 + 5H_2O$ (1)

1

5.	(a)	$\mathbf{A} = \mathbf{t}$ $\mathbf{B} = \mathbf{s}$	tertiary alcohol/ 3° (1) secondary alcohol/ 2° (1)	2	
	(b)	(2)-n	nethylpropan-2-ol (1)	1	
	(c)	(i)	 (selects isomer C and) gives suitable structure for butanal (1) or (selects isomer D and) gives suitable structure for 2-methylpropanal (1) 	1	
		(ii)	(sodium / potassium) dichromate / manganate VII (1)		
			acidic conditions / H^+ (this mark dependent on first mark) (1) not HCl with KMnO ₄		
			distill(ation) not reflux (1)	3	
	(d)	(i)	removal of water (1)	1	
		(ii)	alkene / ether (not a named example) (1)	1	
		(iii)	concentrated sulphuric acid / concentrated or solid phosphoric acid (strong) heat / high temperature / $150 - 200 \text{ °C}$ / reflux or		
			suitable catalyst eg aluminium oxide / broken porcelain (1) strong heat / high temperature / $300+$ °C (1)		
			mark for conditions dependent on mark for reagents	2	
		(iv)	(selects isomer C and) gives suitable structure for but-1-ene (accept but-2-ene structure if primary to secondary carbocation rearrangement mentioned) or		
			(selects isomer A or D and) gives suitable structure for 2-methylpropene (1) also accept structures for ethers	1	
		(v)	selects isomer B (1)		
			suitable structure for but-1-ene (mark independently of isomer chosen) (1)		
			suitable structure for but-2-ene (either cis or trans not both) (1)		
			dehydration 'involves the removal of OH and H to make water,		
			and H can be either from C_1 or from C_3 so two isomers formed (1)	4	
					[16]
6.	(a)	(i)	Equation (1)		
			$CH_3CH_2CH_2CH_2OH + [O] \rightarrow CH_3CH_2CH_2 - C \swarrow_H^O + H_2O(1)$		
			Colour change \rightarrow green		
		(ii)	Reagent ammoniacal silver nitrate/Tollens (1)		
			<i>Observation with oxidation product of butan-1-ol</i> silver mirror (1)		
			<i>Observation with oxidation product of butan-2-ol</i> no reaction (1)	6	

7.

(b)	Buta	noic acid (1)				1	
(c)	Strue	cture of isomer 1	S	tructure of iso	omer 2		
		CH ₃		CH ₃			
	H ₃ C·	$-C$ $-CH_2OH$	H	$_{3}C - C - C$	CH ₃		
		н	(1)	ОН	(1)		
	Nam	e of isomer 1	2-methylpropan-1	l-ol (1)			
	Nam	e of isomer 2	2-methylpropan-2	2-ol (1)		4	[11]
							[]
(a)	(i)	Electron pair/ lo with an <u>electron</u> (insist on	<u>ne pair</u> acceptor Ol <u>pair</u> reference to a <u>pair</u>	R seeking/bor of electrons)	nds	1	
	(ii)	M1 curly arrow alongside the H <i>(penalise</i> <i>(ignore a</i>)	from middle of C= atom of the H-Br; arrows which go to partial negative ch	<u>C bond</u> of the owards one of arge on the C	e alkene towards/ f the carbon atom $C=C$	1 (s)	
		M2 curly arrow (penalise partial ch (penalise line)	<u>from H-Br bond</u> to M2 if there are for arges which are the M2 if the single bo	side of Br ato mal charges o e wrong) nd has two do	om; on HBr or if there ots in addition to	1 e are the	
		M3 correct struc (penalise (penalise marks can	ture for carbocatio M3 if the positive c M3 if any alkene of a score)	n; harge is place ther than ethe	ed on the end of a ene is used - all o	1 bond) ther	
		M4 curly arrow of carbocation, of	from lone pair on tensuring that bromi	promide ion to de ion has a r	o the positive <u>carl</u> negative charge;	<u>bon</u> 1	
(b)	(i)	M1: potassium o (ignore co work) (pe	yanide OR KCN C onditions - dissolve nalise HCN)	DR sodium Cy d in (aq) or (d	yanide OR NaCN alc) or KOH(aq)	; 1 all	
		M2: propaneniti (credit pr	ile; opan-1-nitrile OR _l	oropan nitrile	e, but not propani	1 trile)	
	(ii)	M1: ammonia C (If formul (ignore co	R NH ₃ ; a is written, insist t onditions, but penal	hat it is corre lise acidic)	ect)	1	
		M2: ethylamine (credit an	; iinoethane)			1	

(iii)	M1: curly arrow <u>from lone pair</u> on nitrogen of (correct formula for) ammonia towards/alongside C atom of C-Br; (penalise M1 if formula of ammonia is wrong or has a negative charge or has no lone pair or arrow is from negative charge)	1
	M2: curly arrow <u>from C-Br bond</u> towards/alongside side Br atom; (credit M2 independently) (penalise M2 if formal positive charge on C atom of C-Br)	1
	M3: correct structure of the ethylammonium ion; (credit the structure drawn out with all four bonds around the nitrogen atom OR written as $C_2H_5NH_3^+$ OR $CH_3CH_2NH_3^+$)	1
	M4: curly arrow from the middle of one of the H-N bonds towards the positive N atom; (possible to credit M4 on an incorrect ethylammonium ion with no positive charge) (ignore use of ammonia or bromide ion etc. to remove proton from ethylammonium ion) (If the wrong haloalkane is used, award MAX. 3 marks for the mechanism) (If S_N 1 mechanism is used, give full credit in which M1 is for a curly arrow from the lone pair of the N atom of (correct formula for) ammonia towards/alongside the positive carbon atom of $CH_3CH_2^+$)	1

8. (a) Reagents $H_2SO_4 \text{ or } H_3PO_4 \text{ or } Al_2O_3$ (1)

elimination (1)

(b)	Type of isomerism	geometrical <u>or</u> cis-trans (1)		
	Explanation	restricted rotation or		
		double bond rigid (1)	2	
				[4]

Mill Hill High School

[17]

9.	(a)	elect	rophilic addition	1	
		M1: H ₁ OS (pend (igno incon (cred	curly arrow <u>from C=C</u> bond towards/alongside the side of H atom on SO ₂ OH alise M1 if arrow to H_2SO_4 OR to formal charge on H of H_1O bond) ore partial charges on H and O of H_2SO_4 , but penalise if these are rect on the H atom being attacked) lit M1 and M2 if correct curly arrow to H+ provided the anion is present)	1	
	 M2: curly arrow from <u>H–O bond</u> towards/alongside the side of the O atom on H–OSO₂OH (credit the arrow even if there are partial or formal charges on H and O but the structure of H₂SO₄ is correct) M3: correct structure of the carbocation (penalise use of 'sticks' in this structure) M4: curly arrow from lone pair on an individual oxygen atom of 				
		(corr beari (insis elect	ect formula for) hydrogensulphate ion towards/alongside C atom ing the positive charge st that the an ion has the correct formula with a lone pair of rons and a negative charge)	1	
	(b)	(i)	ethanal correct structure for ethanal (aldehyde functional group must be drawn out)	1 1	
		(ii)	oxidation or redox	1	[8]
10.	(a)	(i)	$C_{6}H_{12}O_{6} \rightarrow 2C_{2}H_{5}OH + 2CO_{2}$ (Or CH ₃ CH ₂ OH)	1	
			(Ignore state symbols in the equation)		
		(ii)	Fermentation	1	
	(b)	(i)	$C_{2}H_{5}OH + 3O_{2} \rightarrow 2CO_{2} + 3H_{2}O$ (Or $C_{2}H_{6}O$ or $CH_{3}CH_{2}OH$)	1	
		(ii)	CO or carbon monoxide or C or carbon ONLY	1	
		(iii)	$2CO + 2NO \rightarrow 2CO_2 + N_2$ OR 2NO $\rightarrow N_2 + O_2$ OR 2NO + C $\rightarrow N_2 + CO_2$ OR C ₈ H ₁₈ + 25NO \rightarrow 8CO ₂ 12 ¹ / ₂ N ₂ + 9H ₂ O	1	
			(In equation 2, allow additional O_2 on both sides of the equation)		
	(c)	Elim	ination	1	
			(Penalise additional words such as "electrophilic")		[6]

11. *Step 3*

dehydration <u>or</u> elimination (1) $H_2SO_4 \text{ or } H_3PO_4 \text{ or } A1_2O_3$ (1)

12. (a) % O = 21.6 % (1) If % O not calculated only M2 available

> C $\frac{64.9}{12}$ H $\frac{13.5}{1}$ O $\frac{21.6}{16}$ (1) = 5.41 = 13.5 = 1.35

Ratio: 4 : 10: 1 (\therefore C₄H₁₀O) (**1**)

If arithmetic error in any result lose M3

If percentage composition calculation done zero

(b) (i) Type of alcohol: Tertiary (1)
Reason: No hydrogen atom on central carbon (1)
OH

$$CH_3 - \stackrel{1}{C} - CH_2CH_3$$

H
(ii) (1) (1)

Isomer 3 Isomer 4 Penalise missing bonds / incorrect bonds once per paper

 (c) (i) Aldehyde (1) Ignore named aldehydes or their structures, penalise wrong named compound
 (ii) CH₃CH₂CH₂CH₂CH₂OH + [O] → CH₃CH₂CH₂CHO + H₂O (1)

- Balanced (1) $C_4H_{10}O$ is OK as a reactant [O] can be over arrow C_3H_7CHO not accepted for product, but $C_2H_5CH_2CHO$ is OK If use C_3 or C_5 compounds no marks in (ii) C.E of wrong alcohol
- (iii) *Name* Butanoic acid (1) *Structure*: CH₃CH₂COOH (1)
- (d) Advantage: Fast reaction OR pure product OR continuous process OR cheap OR high yield,100% alcohol (1) Disadvantage: High technology OR ethene from non renewable source OR expensive equipment not just costly (1) Not answers based on fermentation

2

3

4

5

2

[14]

13.

(i) 3-methylbutan-2-ol (1) No alternatives

- (ii) elimination or dehydration (1)
- (iii) (c) H_2SO_4 or (c) H_3PO_4 name or correct formula (1)

Alkene 1Alkene 2(iv)
$$H_1 = C_1 = C_1 - C_1 - C_1 + C_1 = C_1 = C_1 + C_1 = C_1$$

(b) *Name of mechanism* elimination (1)

Mechanism

- (c) Structure $CH_3CH_2 - C = CH_2$ (1) CH_2CH_3 Name 2-ethylbut-1-ene (1)
- 17.

(i) substitution <u>or</u> hydrolysis (1)nucleophile (1)

(ii) $H\overline{O}: CH(CH_3)_2 \rightarrow HO - CH(CH_3)_2$ (iii) $H\overline{O}: CH_2CH_3 \rightarrow HO - CH(CH_3)_2$ (iii) $CH_2CH_3 \rightarrow HO - CH(CH_3)_2$ (1) CH_2CH_3 (1)

(iii) tertiary $\underline{\text{or}}$ no C–H (1)

18. (a)M1fermentationM2dehydration or elimination

[8]

2

[6]

6

1

(b)	(i)	yeast OR zymase OR an enzyme		1
	(ii)	<u>concentrated</u> sulphuric or phosphoric acid (penalise aqueous or dilute as a contract	liction)	1
(c)	(i)	primary or 1°		1
	(ii)	sugar or glucose or ethanol is renewable OR ethanol does not contain sulphur-containin OR ethanol produces <u>less</u> pollution or is <u>less</u> su (the objective is a positive statement above) (penalise the idea that ethanol is an infi- statements that ethanol has less impurite that ethanol produces no pollution)	ng impurities moky or <u>less</u> CO/C out ethanol) nite source or vague ies) (penalise the idea	1
(d)	C ₂ H	$_6 \rightarrow C_2H_4 + H_2$		1
(e)	Add	ition (ignore self or chain as a preface to "ad (penalise additional)	ldition")	1 [8]
(a)	(i)	CH ₃ CH ₂ CH ₂ CH ₂ CH ₂ CH ₂ OH + [O] → CH ₃ CH (equation balances (1)) allow C ₄ H ₉ CH ₂ OH produce or C ₅ H ₁₁ OH e.g. Co If ketone shown here allow balance	² CH ₂ CH ₂ CHO + H ₂ O (1) ct must show aldehyde group 4 H9 CHO	
		If wrong alcohol used, allow balance		
	(ii)	CH ₃ CH ₂ CH ₂ CH(OH)CH ₃ + [O] → CH ₃ CH ₃ (equation balances (1)) allow C ₃ H ₇ C(OH) CH ₃ produce	$_{2}$ CH $_{2}$ COCH $_{3}$ + H $_{2}$ O (1) ct must show CO in ketone	
		or $C_5 H_{11} OH$ e.g. C_5	$_{3}H_{7}COCH_{3}$	
		If wrong alcohol used, allow balance		Δ
(b)	Fehl	ing's solution or Tollen's reagent or Potassium d	lichromate (1)	+
(-)	<	-Boil, heat, warm → ammoniacal silver nitrat Conditions tied to reagent	e	
	oran	ge or brown or red precipitate or solid etc		
	or	silver mirror grey/black precipitate of solid		
	or	(orange) turns green or blue observation tied to reagent		

19.

No precipitate

- or no silver mirror
- or no colour change (1)

or no reaction \longrightarrow

Not "nothing"

If no reagent or wrong reagent quoted, mark as 'CE'

Any appropriate reagent - e.g. - Benedicts, but if $Cr2O_7^{2-}$ or $[Ag CNH_3)_2]^+$

or MnO_4^- given, do <u>not</u> allow reagent mark.

[8]

20.	(a)	M1: CH ₃ CH M2: CH ₃ CH ((H ₂ CH ₂ CH ₂ OH; H(OH)CH ₂ CH ₃ ; penalise incorrect alcohols in part (a), but mark consequentially in part (b) and in part (c), if relevant) (if three alcohols drawn, award MAX. 1 mark)	1 1		
	(b)	M1, M2 and I (l	M3: Correct structures for butanal, butanone and butanoic acid; (award these structure marks wherever the structures appear, but insist that the $C=O$ is shown in each structure and additionally, the C-O in the carboxylic acid	3		
		M4:	<u>balanced equation</u> for the reaction of butan-1-ol with [O] to produce butanal and water;	1		
		M5:	<u>balanced equation</u> for the reaction of butan-1-ol with [O] to produce butanoic acid and water			
		OR				
		<u>balanced equation</u> for the reaction of butanal with [O] to produce butanoic acid;				
		M6: <u>balanced</u> produce butan (e <i>t</i> t	Lequation for the reaction of butan-2-ol with [O] to none and water; (Credit condensed structures or molecular formulas in each equation, provided it is obvious to which reaction the equation refers) (Insist that whatever formula is used in each equation that it is a conventional representation of the compound; for example penalise $CH_3CH_2CH_2COH$ for butanal)	1		
	(c)	M1: Correct M2: 2-meth	t structure for 2-methylpropan-2-ol; ylpropan-2-ol	1		
		OR				
		methylpropar (t	n-2-ol; (penalise on every occasion in parts (a) and (c), structures for the alcohols that are presented with the alcohol functional group as C-H-O)	1		

[10]

21.

(a)	$K_2Cr_2O_7/H$	$_2$ SO ₄ reduced	by		
	CH ₃ 0	CH ₂ CH ₂ CH ₂ O	H (1)		
		oxidised to and	CH ₃ (CH ₂) ₂ CHO (1) CH ₃ (CH ₂) ₂ COOH (1)		
	CH ₃ 0	CH ₂ CH ₂ CHO	(1)		
		oxidised to	CH ₃ (CH ₂) ₂ COOH (1)		
	Equation:	$Cr_2O_7^{2-} + 14$ Note: Deduc agents.	$H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$ (1) t one if all three compounds given as reducing	6	
(b)	Tollens' rec C	luced by H ₃ CH ₂ CH ₂ CH	IO (1)		
		oxidised to	CH ₃ (CH ₂) ₂ COOH (1)		
	Equation	$\left[\mathrm{Ag}(\mathrm{NH}_3)_2\right]^+$	$+e^{-} \rightarrow Ag + 2NH_3$ (1)	3	[9]
(a)	Reaction 1	H ₂ O or	steam (1)		
	Reaction 5	NH ₃ (1) For Reaction but NOT stee	n 4; credit dil H2SO4 OR H2SO4(aq) OR HCl (aq) am and NOT NaOH(aq)	2	
(b)				4	
	$H_2 C = C$ $M_1 H_2 H_1 H_2 H_1 H_1 H_1 H_1 H_1 H_1 H_1 H_1 H_1 H_1$	H_2 $H \bigcup_{(1) M2}^{Br}$	H H H M4 $H - C - C - H (1) $ structure $H H H (1) $ $H - C - C - H (1) $ $H H H H H H H H H H H H H H H H H H H$		

M3 **M**2 Penalise M2 incorrect δ + / δ -Penalise δ - on alkene (M1) Penalise dots on bonds once Penalise M4 (structure) for use of wrong alkene Penalise M1 for use of Br₂

Water OR aqueous solution OR (aq) in equation (1) M1 (c) Yeast OR enzyme/zymase OR $T \le 45^{\circ}C$ M2 but T not below 20°C and allow warm *N.B. yeast and* $T=60^{\circ}$ \checkmark *con* Ignore pH Ignore anaerobic / oxygen Ignore time Ignore pressure

22.

$C_6H_{12}O_6 \rightarrow 2C_2H_5OH \text{ (or } CH_3CH_2OH) + 2CO_2$ M				
	Allow $C_{12}H_{22}O_{11}$ if balanced equation			
	M4 <u>OR</u> M5 needs the use of good English <u>and</u> correct chemistry to gain credit			
M4:	The rate of fermentation is slow <u>er</u> (1)			
0	R The rate of hydration is faster			
QoL O	R (The rate of) fermentation is slow <u>and</u>			
	(the rate of) hydration is fast			
	reference <u>correctly</u> to time rather than rate gains credit			
M5:	The product of fermentation is less pure or lower purity			
0	R The product of hydration is more pure or high <u>er</u> purity			
0	R The product of fermentation is impure <u>and</u> that of hydration is pure			
0	R Specific reference to 10–15% versus 90–100%			
0	R correct reference to higher or lower yield	5		
		[11]		

CH₃COOH

 $CH_3CH_2OH + 2[O] \rightarrow CH_3COOH + H_2O$ (1)

24. (a)
$$CH_4 + Cl_2 \rightarrow CH_3Cl + HCl (1)$$

Initiation: $Cl_2 \rightarrow 2Cl \cdot (1)$
Propagation: $CH_4 + Cl \cdot \rightarrow CH_3 \cdot + HCl (1)$
 $CH_3 \cdot + Cl_2 \rightarrow CH_3Cl + Cl \cdot (1)$

Termination:
$$CH_3 \cdot + Cl \cdot \rightarrow CH_3Cl$$
 (1)
or $CH_3 \cdot + CH_3 \cdot \rightarrow C_2H_6$

[9]

300°C (1) 65 atmos (1) Fermentation: yeast (1) 35°C (1) air free (1) Two from Advantages: faster/purer product/continuous process (cheaper on manpower) (2) Disadvantage: ethene is non-renewable resource (1) 9 25. (a) Reaction 2: NaOH OR KOH (1) M1 alcohol (ic) OR ethanol (ic)(1) M2 ignore heat Condition mark linked to correct reagent but award M2 if OH⁻ or base or alkali mentioned <u>Reaction 3</u>: concentrated H_2SO_4 OR H_3PO_4 M1 (1) heat (1) M2 OR 150°C - 200°C 4 Condition mark linked to correct reagent but award M2 if H_2SO_4 or H₃PO₄, but <u>not</u> concentrated Penalise reagent and condition if dilute H_2SO_4/H_3PO_4 (b) Mechanism: Award M3 (C - Cl) independently *M1 and M2 must be to / from correct places* E1 mechanism possible in which M2 H—C H<u>Name</u>: of mechanism = elimination (1) NOT dehydrohalogenation Ignore "base" OR "nucleophilic" before elimination Reason: Reaction 2 has (very) low yield (1) 5 QoL *OR* chloroethane has to be made (from ethane) OR chloroethane is expensive OR chloroethane is not redily available

(c) <u>Name</u> of mechanism = elimination (1) *NOT dehydration alone*

<u>Reason</u>: Ethanol could come from (fermentation of) <u>renewable</u> <u>QoL</u> sugars / glucose / carbohydrates / sources (1)

2

(b)

Hydration: H_3PO_4 (1)

[**11**] 14

[14]

26.	(a)	A - alkene (1)					
		\mathbf{B} – halogenoalkane / bromoalkane / alkyl halide / haloalkane (1)					
		C – alcohol (ignore primary, secondary) (1)	3				
	(b)	(i) addition ignore nucleophilic / electrophilic / free radical (1)	1				
		(ii) substitution not replacement / displacement (1)	1				
		(iii) oxidation not reduction; not redox; allow dehydrogenation (1)	1				
	(c)	Sodium hydroxide / NaOH / KOH not just hydroxide (1)					
		(B to C)aqueous not dilute (1)(B to A)alcoholic (1)					
		mark alternatives as (d) ignore references to concentration and temperature	3				
	(d)	sodium (or potassium) dichromate / $Na_2Cr_2O_7$ or (1) named alkali or water or aqueous					
		sulphuric acid / H ₂ SO ₄ ignore dilute / concentrated (1) allow HCl, H ₃ PO ₄ , HNO ₃					
		allow KMnO ₄ with $H_2SO_4 / H_3PO_4 / HNO_3$ not HCl allow 1 mark for acidified dichromate or dichromate / H ⁺					
		heat / reflux / boil / warm / temperature $40^{\circ}C \rightarrow 100^{\circ}C$ (1) this mark dependent on 'dichromate' or 'manganate' 3					
	(e)	(i) $CH_3CH(CH_3)Br + NaOH \rightarrow CH_3CH=CH_2 + NaBr + H_2O$ (1)					
		(ii) $CH_3CH(CH_3)Br + NaOH \rightarrow CH_3CH(CH_3)OH + NaBr$ (1)					
		allow molecular formulae C_3H_7Br ; C_3H_8O ; C_3H_6 allow ionic versions (with OH ⁻ , Br ⁻)	2				
	(f)	arrow from O of OH ⁻ to C joined to Br (1) lone pair not needed					
		C–Br polarity shown by $\delta + \delta$ – or heterolytic fission of C–Br bond shown by arrow from bond between C and Br to Br or intermediate with partial bonds and minus sign (1)					
		Br ⁻ as product (1)					
		allow all 3 marks if 1-bromopropane identified as B	3				
			r				